Bootstrapping Regression Models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrapping Principal Component Regression Models

Bootstrap methods can be used as an alternative for cross-validation in regression procedures such as principal component regression (PCR). Several bootstrap methods for the estimation of prediction errors and confidence intervals are presented. It is shown that bootstrap error estimates are consistent with cross-validation estimates but exhibit less variability. This makes it easier to select ...

متن کامل

Validating Geospatial Regression Models With Bootstrapping

Spatial statistical models have been used extensively in many geospatial and environmental studies over several decades. While being very important, the issues of testing and validation in spatial statistical models are rarely investigated carefully in spatial environmental studies. Often strict theoretical asymptotic assumptions used in those models are left unexplored or unanswered in many st...

متن کامل

Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap

In regression models, appropriate bootstrap methods for inference robust to heteroskedasticity of unknown form are the wild bootstrap and the pairs bootstrap. The finite sample performance of a heteroskedastic-robust test is investigated with Monte Carlo experiments. The simulation results suggest that one specific version of the wild bootstrap outperforms the other versions of the wild bootstr...

متن کامل

BOOTSTRAPPING ROBUST REGRESSION Galen

M-estim::ztes The bootstrap principle is justified for robust M-estimates in regression. (A short proof justifying bootstrapping the empirical process is also given.) l.a.

متن کامل

Bootstrapping the log-periodogram regression

Semiparametric estimation of the memory parameter in economic time series raises the problem of the small sample size and the poor approximation of the asymptotic distribution to the finite sample counterpart. This paper considers the bootstrap to improve the finite sample distribution of the popular log peridogram regression and shows that it can significantly reduce the error in the coverage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1981

ISSN: 0090-5364

DOI: 10.1214/aos/1176345638